/* * Copyright (c) 2006-2018, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2011-07-25 weety first version */ #include "mmcsd_core.h" #include "rt_sys_header.h" #include "sd.h" #define DBG_TAG "SDIO" #ifdef RT_SDIO_DEBUG #define DBG_LVL DBG_LOG #else #define DBG_LVL DBG_INFO #endif /* RT_SDIO_DEBUG */ static const uint32_t tran_unit[] = { 10000, 100000, 1000000, 10000000, 0, 0, 0, 0 }; static const uint8_t tran_value[] = { 0, 10, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80, }; static const uint32_t tacc_uint[] = { 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, }; static const uint8_t tacc_value[] = { 0, 10, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80, }; rt_inline uint32_t GET_BITS(uint32_t *resp, uint32_t start, uint32_t size) { const int32_t __size = size; const uint32_t __mask = (__size < 32 ? 1 << __size : 0) - 1; // 32 const int32_t __off = 3 - ((start) / 32); // 3 32 const int32_t __shft = (start) & 31; // 31 uint32_t __res; __res = resp[__off] >> __shft; if (__size + __shft > 32) { // 32 __res |= resp[__off-1] << ((32 - __shft) % 32); // 32 } return __res & __mask; } static int32_t mmcsd_parse_csd(struct rt_mmcsd_card *card) { struct rt_mmcsd_csd *csd = &card->csd; uint32_t *resp = card->resp_csd; csd->csd_structure = GET_BITS(resp, 126, 2); // 126 2 switch (csd->csd_structure) { case 0: csd->taac = GET_BITS(resp, 112, 8); // 112 8 csd->nsac = GET_BITS(resp, 104, 8); // 104 8 csd->tran_speed = GET_BITS(resp, 96, 8); // 96 8 csd->card_cmd_class = GET_BITS(resp, 84, 12); // 84 12 csd->rd_blk_len = GET_BITS(resp, 80, 4); // 80 4 csd->rd_blk_part = GET_BITS(resp, 79, 1); // 79 1 csd->wr_blk_misalign = GET_BITS(resp, 78, 1); // 78 1 csd->rd_blk_misalign = GET_BITS(resp, 77, 1); // 77 1 csd->dsr_imp = GET_BITS(resp, 76, 1); // 76 1 csd->c_size = GET_BITS(resp, 62, 12); // 62 12 csd->c_size_mult = GET_BITS(resp, 47, 3); // 47 3 csd->r2w_factor = GET_BITS(resp, 26, 3); // 26 3 csd->wr_blk_len = GET_BITS(resp, 22, 4); // 22 4 csd->wr_blk_partial = GET_BITS(resp, 21, 1); // 21 1 csd->csd_crc = GET_BITS(resp, 1, 7); // 1 7 card->card_blksize = 1 << csd->rd_blk_len; card->card_capacity = (csd->c_size + 1) << (csd->c_size_mult + 2); // 2 card->card_capacity *= card->card_blksize; card->card_capacity >>= 10; /* unit:10KB */ card->tacc_clks = csd->nsac * 100; // 100 card->tacc_ns = (tacc_uint[csd->taac&0x07] * tacc_value[(csd->taac&0x78)>>3] + 9) / 10; // 3 9 10 card->max_data_rate = tran_unit[csd->tran_speed&0x07] * tran_value[(csd->tran_speed&0x78)>>3]; // 3 break; case 1: card->flags |= CARD_FLAG_SDHC; /* This field is fixed to 0Eh, which indicates 1 ms The host should not use TAAC, NSAC, and R2W_FACTOR to calculate timeout and should uses fixed timeout values for read and write operations */ csd->taac = GET_BITS(resp, 112, 8); // 112 8 csd->nsac = GET_BITS(resp, 104, 8); // 104 8 csd->tran_speed = GET_BITS(resp, 96, 8); // 96 8 csd->card_cmd_class = GET_BITS(resp, 84, 12); // 84 12 csd->rd_blk_len = GET_BITS(resp, 80, 4); // 80 4 csd->rd_blk_part = GET_BITS(resp, 79, 1); // 79 1 csd->wr_blk_misalign = GET_BITS(resp, 78, 1); // 78 1 csd->rd_blk_misalign = GET_BITS(resp, 77, 1); // 77 1 csd->dsr_imp = GET_BITS(resp, 76, 1); // 76 1 csd->c_size = GET_BITS(resp, 48, 22); // 48 22 csd->r2w_factor = GET_BITS(resp, 26, 3); // 26 3 csd->wr_blk_len = GET_BITS(resp, 22, 4); // 22 4 csd->wr_blk_partial = GET_BITS(resp, 21, 1); // 21 1 csd->csd_crc = GET_BITS(resp, 1, 7); // 1 7 card->card_blksize = 512; // 512 card->card_capacity = (csd->c_size + 1) * 512; /* unit:512KB */ card->tacc_clks = 0; card->tacc_ns = 0; card->max_data_rate = tran_unit[csd->tran_speed&0x07] * tran_value[(csd->tran_speed&0x78)>>3]; // 3 break; default: LOG_E("unrecognised CSD structure version %d!", csd->csd_structure); return -RT_ERROR; } LOG_I("SD card capacity %d KB.", card->card_capacity); return 0; } static int32_t mmcsd_parse_scr(struct rt_mmcsd_card *card) { struct rt_sd_scr *scr = &card->scr; uint32_t resp[4]; resp[3] = card->resp_scr[1]; // 3 1 resp[2] = card->resp_scr[0]; // 2 0 scr->sd_version = GET_BITS(resp, 56, 4); // 56 4 scr->sd_bus_widths = GET_BITS(resp, 48, 4); // 48 4 return 0; } static int32_t mmcsd_switch(struct rt_mmcsd_card *card) { int32_t err = 0; struct rt_mmcsd_host *host = card->host; struct rt_mmcsd_req req; struct rt_mmcsd_cmd cmd; struct rt_mmcsd_data data; uint8_t *buf; buf = (uint8_t*)rt_malloc(64); // 64 if (!buf) { LOG_E("alloc memory failed!"); return -RT_ENOMEM; } if (card->card_type != CARD_TYPE_SD) { goto err; } if (card->scr.sd_version < SCR_SPEC_VER_1) { goto err; } rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd)); cmd.cmd_code = SD_SWITCH; cmd.arg = 0x00FFFFF1; cmd.flags = RESP_R1 | CMD_ADTC; rt_memset(&data, 0, sizeof(struct rt_mmcsd_data)); mmcsd_set_data_timeout(&data, card); data.blksize = 64; // 64 data.blks = 1; data.flags = DATA_DIR_READ; data.buf = (uint32_t *)buf; rt_memset(&req, 0, sizeof(struct rt_mmcsd_req)); req.cmd = &cmd; req.data = &data; mmcsd_send_request(host, &req); if (cmd.err || data.err) { goto err1; } if (buf[13] & 0x02) { // 13 card->hs_max_data_rate = 50000000; // 50000000 } rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd)); cmd.cmd_code = SD_SWITCH; cmd.arg = 0x80FFFFF1; cmd.flags = RESP_R1 | CMD_ADTC; rt_memset(&data, 0, sizeof(struct rt_mmcsd_data)); mmcsd_set_data_timeout(&data, card); data.blksize = 64; // 64 data.blks = 1; data.flags = DATA_DIR_READ; data.buf = (uint32_t *)buf; rt_memset(&req, 0, sizeof(struct rt_mmcsd_req)); req.cmd = &cmd; req.data = &data; mmcsd_send_request(host, &req); if (cmd.err || data.err) { goto err1; } if ((buf[16] & 0xF) != 1) { // 16 LOG_I("switching card to high speed failed!"); goto err; } card->flags |= CARD_FLAG_HIGHSPEED; err: rt_free(buf); return 0; err1: if (cmd.err) { err = cmd.err; } if (data.err) { err = data.err; } return err; } static rt_err_t mmcsd_app_cmd(struct rt_mmcsd_host *host, struct rt_mmcsd_card *card) { rt_err_t err; struct rt_mmcsd_cmd cmd = {0}; cmd.cmd_code = APP_CMD; if (card) { cmd.arg = card->rca << 16; // 16 cmd.flags = RESP_R1 | CMD_AC; } else { cmd.arg = 0; cmd.flags = RESP_R1 | CMD_BCR; } err = mmcsd_send_cmd(host, &cmd, 0); if (err) { return err; } /* Check that card supported application commands */ if (!controller_is_spi(host) && !(cmd.resp[0] & R1_APP_CMD)) { return -RT_ERROR; } return RT_EOK; } rt_err_t mmcsd_send_app_cmd(struct rt_mmcsd_host *host, struct rt_mmcsd_card *card, struct rt_mmcsd_cmd *cmd, uint32_t retry) { struct rt_mmcsd_req req; uint32_t i; rt_err_t err; err = -RT_ERROR; /* * We have to resend MMC_APP_CMD for each attempt so * we cannot use the retries field in mmc_command */ for (i = 0;i <= retry; i++) { rt_memset(&req, 0, sizeof(struct rt_mmcsd_req)); err = mmcsd_app_cmd(host, card); if (err) { /* no point in retrying; no APP commands allowed */ if (controller_is_spi(host)) { if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND) { break; } } continue; } rt_memset(&req, 0, sizeof(struct rt_mmcsd_req)); rt_memset(cmd->resp, 0, sizeof(cmd->resp)); req.cmd = cmd; mmcsd_send_request(host, &req); err = cmd->err; if (!cmd->err) { break; } /* no point in retrying illegal APP commands */ if (controller_is_spi(host)) { if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND) { break; } } } return err; } rt_err_t mmcsd_app_set_bus_width(struct rt_mmcsd_card *card, int32_t width) { rt_err_t err; struct rt_mmcsd_cmd cmd; rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd)); cmd.cmd_code = SD_APP_SET_BUS_WIDTH; cmd.flags = RESP_R1 | CMD_AC; switch (width) { case MMCSD_BUS_WIDTH_1: cmd.arg = MMCSD_BUS_WIDTH_1; break; case MMCSD_BUS_WIDTH_4: cmd.arg = MMCSD_BUS_WIDTH_4; break; default: return -RT_ERROR; } err = mmcsd_send_app_cmd(card->host, card, &cmd, 3); // 3 times if (err) { return err; } return RT_EOK; } rt_err_t mmcsd_send_app_op_cond(struct rt_mmcsd_host *host, uint32_t ocr, uint32_t *rocr) { struct rt_mmcsd_cmd cmd; uint32_t i; rt_err_t err = RT_EOK; rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd)); cmd.cmd_code = SD_APP_OP_COND; if (controller_is_spi(host)) { cmd.arg = ocr & (1 << 30); /* SPI only defines one bit 30 */ } else { cmd.arg = ocr; } cmd.flags = RESP_SPI_R1 | RESP_R3 | CMD_BCR; for (i = 100; i; i--) { // 100 err = mmcsd_send_app_cmd(host, RT_NULL, &cmd, 3); // 3 if (err) { break; } /* if we're just probing, do a single pass */ if (ocr == 0) { break; } /* otherwise wait until reset completes */ if (controller_is_spi(host)) { if (!(cmd.resp[0] & R1_SPI_IDLE)) { break; } } else { if (cmd.resp[0] & CARD_BUSY) { break; } } err = -RT_ETIMEOUT; mmcsd_delay_ms(10); // delay 10ms } if (rocr && !controller_is_spi(host)) { *rocr = cmd.resp[0]; } return err; } /* * To support SD 2.0 cards, we must always invoke SD_SEND_IF_COND * before SD_APP_OP_COND. This command will harmlessly fail for * SD 1.0 cards. */ rt_err_t mmcsd_send_if_cond(struct rt_mmcsd_host *host, uint32_t ocr) { struct rt_mmcsd_cmd cmd; rt_err_t err; uint8_t pattern; cmd.cmd_code = SD_SEND_IF_COND; cmd.arg = (((ocr & 0xFF8000) != 0) << 8) | 0xAA; // 8 cmd.flags = RESP_SPI_R7 | RESP_R7 | CMD_BCR; err = mmcsd_send_cmd(host, &cmd, 0); if (err) { return err; } if (controller_is_spi(host)) { pattern = cmd.resp[1] & 0xFF; } else { pattern = cmd.resp[0] & 0xFF; } if (pattern != 0xAA) { return -RT_ERROR; } return RT_EOK; } rt_err_t mmcsd_get_card_addr(struct rt_mmcsd_host *host, uint32_t *rca) { rt_err_t err; struct rt_mmcsd_cmd cmd; rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd)); cmd.cmd_code = SD_SEND_RELATIVE_ADDR; cmd.arg = 0; cmd.flags = RESP_R6 | CMD_BCR; err = mmcsd_send_cmd(host, &cmd, 3); // 3 if (err) { return err; } *rca = cmd.resp[0] >> 16; // 16 return RT_EOK; } #define be32_to_cpu(x) ((uint32_t)( \ (((uint32_t)(x) & (uint32_t)0x000000ffUL) << 24) | \ (((uint32_t)(x) & (uint32_t)0x0000ff00UL) << 8) | \ (((uint32_t)(x) & (uint32_t)0x00ff0000UL) >> 8) | \ (((uint32_t)(x) & (uint32_t)0xff000000UL) >> 24))) int32_t mmcsd_get_scr(struct rt_mmcsd_card *card, uint32_t *scr) { int32_t err; struct rt_mmcsd_req req; struct rt_mmcsd_cmd cmd; struct rt_mmcsd_data data; err = mmcsd_app_cmd(card->host, card); if (err) { return err; } rt_memset(&req, 0, sizeof(struct rt_mmcsd_req)); rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd)); rt_memset(&data, 0, sizeof(struct rt_mmcsd_data)); req.cmd = &cmd; req.data = &data; cmd.cmd_code = SD_APP_SEND_SCR; cmd.arg = 0; cmd.flags = RESP_SPI_R1 | RESP_R1 | CMD_ADTC; data.blksize = 8; // 8 data.blks = 1; data.flags = DATA_DIR_READ; data.buf = scr; mmcsd_set_data_timeout(&data, card); mmcsd_send_request(card->host, &req); if (cmd.err) { return cmd.err; } if (data.err) { return data.err; } scr[0] = be32_to_cpu(scr[0]); scr[1] = be32_to_cpu(scr[1]); return 0; } static int32_t mmcsd_sd_init_card(struct rt_mmcsd_host *host, uint32_t ocr) { struct rt_mmcsd_card *card; int32_t err; uint32_t resp[4]; // 4 uint32_t max_data_rate; mmcsd_go_idle(host); /* * If SD_SEND_IF_COND indicates an SD 2.0 * compliant card and we should set bit 30 * of the ocr to indicate that we can handle * block-addressed SDHC cards. */ err = mmcsd_send_if_cond(host, ocr); if (!err) { ocr |= 1 << 30; // 30 } err = mmcsd_send_app_op_cond(host, ocr, RT_NULL); if (err) { goto err; } if (controller_is_spi(host)) { err = mmcsd_get_cid(host, resp); } else { err = mmcsd_all_get_cid(host, resp); } if (err) { goto err; } card = rt_malloc(sizeof(struct rt_mmcsd_card)); if (!card) { LOG_E("malloc card failed!"); err = -RT_ENOMEM; goto err; } rt_memset(card, 0, sizeof(struct rt_mmcsd_card)); card->card_type = CARD_TYPE_SD; card->host = host; rt_memcpy(card->resp_cid, resp, sizeof(card->resp_cid)); /* * For native busses: get card RCA and quit open drain mode. */ if (!controller_is_spi(host)) { err = mmcsd_get_card_addr(host, &card->rca); if (err) { goto err1; } mmcsd_set_bus_mode(host, MMCSD_BUSMODE_PUSHPULL); } err = mmcsd_get_csd(card, card->resp_csd); if (err) { goto err1; } err = mmcsd_parse_csd(card); if (err) { goto err1; } if (!controller_is_spi(host)) { err = mmcsd_select_card(card); if (err) { goto err1; } } err = mmcsd_get_scr(card, card->resp_scr); if (err) { goto err1; } mmcsd_parse_scr(card); if (controller_is_spi(host)) { err = mmcsd_spi_use_crc(host, 1); if (err) { goto err1; } } /* * change SD card to high-speed, only SD2.0 spec */ err = mmcsd_switch(card); if (err) { goto err1; } /* set bus speed */ max_data_rate = (unsigned int)-1; if (card->flags & CARD_FLAG_HIGHSPEED) { if (max_data_rate > card->hs_max_data_rate) { max_data_rate = card->hs_max_data_rate; } } else if (max_data_rate > card->max_data_rate) { max_data_rate = card->max_data_rate; } mmcsd_set_clock(host, max_data_rate); /* switch bus width */ if ((host->flags & MMCSD_BUSWIDTH_4) && (card->scr.sd_bus_widths & SD_SCR_BUS_WIDTH_4)) { err = mmcsd_app_set_bus_width(card, MMCSD_BUS_WIDTH_4); if (err) { goto err1; } mmcsd_set_bus_width(host, MMCSD_BUS_WIDTH_4); } host->card = card; return 0; err1: rt_free(card); err: return err; } /* * Starting point for SD card init */ int32_t init_sd(struct rt_mmcsd_host *host, uint32_t ocr) { int32_t err = 0; uint32_t current_ocr; /* * We need to get OCR a different way for SPI */ if (controller_is_spi(host)) { mmcsd_go_idle(host); err = mmcsd_spi_read_ocr(host, 0, &ocr); if (err) { goto err; } } if (ocr & VDD_165_195) { LOG_I(" SD card claims to support the " "incompletely defined 'low voltage range'. This " "will be ignored."); ocr &= ~VDD_165_195; } current_ocr = mmcsd_select_voltage(host, ocr); if (!current_ocr) { err = -RT_ERROR; goto err; } /* * Detect and init the card */ err = mmcsd_sd_init_card(host, current_ocr); if (err) { goto err; } mmcsd_host_unlock(host); err = rt_mmcsd_blk_probe(host->card); if (err) { goto remove_card; } mmcsd_host_lock(host); return 0; remove_card: mmcsd_host_lock(host); rt_mmcsd_blk_remove(host->card); rt_free(host->card); host->card = RT_NULL; err: LOG_D("init SD card failed!"); return err; }